Appendix A

AP BIOLOGY EQUATIONS AND **FORMULAS**

STATISTICAL ANALYSIS AND PROBABILITY				
Mean		Standard Deviation*		
$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$		$S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$		
Standard Error of the Mean*		Chi-Square		
$SE_{\overline{x}} = \frac{S}{\sqrt{n}}$		$\chi^2 = \sum \frac{(o-e)^2}{e}$		
CHI-SQUARE TABLE				
р	Degrees of Freedom			

4

9.49

13.28

5

11.07

15.09

6

12.59

16.81

14.07

18.48

 \overline{x} = sample mean n =sample size

s = sample standard deviation (i.e., the samplebased estimate of the standard deviation of the population)

o = observed results

e = expected results

 Σ = sum of all

8

15.51

20.09

Degrees of freedom are equal to the number of distinct possible outcomes minus one.

LAWS OF PROBABILITY

3.84

6.63

value

0.05

0.01

If A and B are mutually exclusive, then:

2

5.99

9.21

3

7.81

11.34

P(A or B) = P(A) + P(B)

If A and B are independent, then:

 $P(A \text{ and } B) = P(A) \times P(B)$

HARDY-WEINBERG EQUATIONS

p =frequency of allele 1 in a $p^2 + 2pq + q^2 = 1$

population

q = frequency of allele 2 in a p + q = 1

population

METRIC PREFIXES		
Factor	Prefix	Symbol
10 ⁹	giga	G
10 ⁶	mega	M
10 ³	kilo	k
10-2	centi	С
10-3	milli	m
10-6	micro	μ
10-9	nano	n
10 ⁻¹²	pico	р

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

*For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

RATE AND GROWTH					
dY= amount of change	$\Psi = \Psi_{D} + \Psi_{S}$				
dt = change in time	Ψ_{p} = pressure potential				
B = birth rate	Ψ_s = solute potential				
D = death rate	The water potential will be equal to				
N = population size	the solute potential of a solution in an				
K = carrying capacity	open container because the pressure				
r_{max} = maximum per capita growth rate of population	potential of the solution in an open container is zero.				
	The Solute Potential of the Solution				
	$ \Psi_{s} = -iCRT$				
	<i>i</i> = ionization constant (1.0 for sucrose because sucrose does not ionize in				
SIMPSON'S DIVERSITY INDEX					
Diversity Index = $1 - \sum \left(\frac{n}{N}\right)^2$					
n = total number of organisms of a particular species					
N = total number of organisms of all species					
SURFACE AREA AND VOLUME					
Volume of a Sphere	r= radius				
	dY = amount of change dt = change in time B = birth rate D = death rate N = population size K = carrying capacity r _{max} = maximum per capita growth rate of population				

SONFACE ANEA AND VOLUME						
Surface Area of a Sphere	Volume of a Sphere	r= radius				
$SA = 4\pi r^2$	$V = \frac{4}{3}\pi r^3$	/= length				
Surface Area of a Rectangular Solid	Volume of a Rectangular Solid	h = height				
SA = 2lh + 2lw + 2wh	V = lwh	w = width				
Surface Area of a Cylinder	Volume of a Right Cylinder $V = \pi r^2 h$	s = length of one side of a cube				
$SA = 2\pi rh + 2\pi r^2$		SA = surface area				
Surface Area of a Cube	Volume of a Cube	V= volume				
$SA = 6s^2$	$V = s^3$					

^{*}For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.