Appendix A

AP BIOLOGY EOUATIONS AND FORMULAS

STATISTICAL ANALYSIS AND PROBABILITY								
Mean				Standard Deviation*				
$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$				$s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$				
Standard Error of the Mean*				Chi-Square				
$S E_{\bar{x}}=\frac{S}{\sqrt{n}}$				$\chi^{2}=\sum \frac{(o-e)^{2}}{e}$				
CHI-SQUARE TABLE								
$\left\lvert\, \begin{gathered} p \\ \text { value } \end{gathered}\right.$	Degrees of Freedom							
	1	2	3	4	5	6	7	8
0.05	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51
0.01	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09

$\bar{x}=$ sample mean
$n=$ sample size
$s=$ sample standard deviation (i.e., the samplebased estimate of the standard deviation of the population)
$o=$ observed results
$e=$ expected results
$\Sigma=$ sum of all

LAWS OF PROBABILITY

If A and B are mutually exclusive, then:

$$
P(\mathrm{~A} \text { or } \mathrm{B})=P(\mathrm{~A})+P(\mathrm{~B})
$$

If A and B are independent, then:

$$
P(\mathrm{~A} \text { and } \mathrm{B})=P(\mathrm{~A}) \times P(\mathrm{~B})
$$

HARDY-WEINBERG EQUATIONS

$$
\begin{array}{ll}
p^{2}+2 p q+q^{2}=1 & p=\text { frequency of allele } 1 \text { in a } \\
\text { population } \\
q= & \text { frequency of allele } 2 \text { in a } \\
\text { population }
\end{array}
$$

Degrees of freedom are equal to the number of distinct possible outcomes minus one.

METRIC PREFIXES		
Factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	C
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Mode = value that occurs most frequently in a data set
Median = middle value that separates the greater and lesser halves of a data set
Mean = sum of all data points divided by number of data points
Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)
*For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

RATE AND GROWTH		Water Potential (Ψ) $\begin{aligned} & \Psi=\Psi_{p}+\Psi_{s} \\ & \Psi_{p}=\text { pressure potential } \\ & \Psi_{s}=\text { solute potential } \end{aligned}$ The water potential will be equal to the solute potential of a solution in an open container because the pressure potential of the solution in an open container is zero. The Solute Potential of the Solution
Rate $\frac{d Y}{d t}$ Population Growth $\frac{d N}{d t}=B-D$ Exponential Growth $\frac{d N}{d t}=r_{\max } N$ Logistic Growth $\frac{d N}{d t}=r_{\max } N\left(\frac{K-N}{K}\right)$	$\begin{aligned} & d Y=\text { amount of change } \\ & d t=\text { change in time } \\ & B=\text { birth rate } \\ & D=\text { death rate } \\ & N=\text { population size } \\ & K=\text { carrying capacity } \\ & r_{\max }=\text { maximum per capita growth } \\ & \text { rate of population } \end{aligned}$	
SIMPSON'S DIVERSITY INDEX Diversity Index =1- $\Sigma\left(\frac{n}{N}\right)^{2}$ $n=$ total number of organisms of a particular species $N=$ total number of organisms of all species		
SURFACE AREA AND VOLUME		
Surface Area of a Sphere $S A=4 \pi r^{2}$ Surface Area of a Rectangular Solid $S A=2 l h+2 l w+2 w h$ Surface Area of a Cylinder $S A=2 \pi r h+2 \pi r^{2}$ Surface Area of a Cube $S A=6 s^{2}$	Volume of a Sphere $V=\frac{4}{3} \pi r^{3}$ Volume of a Rectangular Solid $V=l w h$ Volume of a Right Cylinder $V=\pi r^{2} h$ Volume of a Cube $V=s^{3}$	$\begin{aligned} & r=\text { radius } \\ & I=\text { length } \\ & h=\text { height } \\ & w=\text { width } \\ & s=\text { length of one side of a cube } \\ & S A=\text { surface area } \\ & V=\text { volume } \end{aligned}$
*For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.		

